Posts

Showing posts with the label databases

Dec 2021 Gartner Magic Quadrant for Cloud Database Management Systems

Image
  Database management systems continue their move to the cloud — a move that is producing an increasingly complex landscape of vendors and offerings. This Magic Quadrant will help data and analytics leaders make the right choices in a complex and fast-evolving market. Strategic Planning Assumptions By 2025, cloud preference for data management will substantially reduce the vendor landscape while the growth in multicloud will increase the complexity for data governance and integration. By 2022, cloud database management system (DBMS) revenue will account for 50% of the total DBMS market revenue. These DBMSs reflect optimization strategies designed to support transactions and/or analytical processing for one or more of the following use cases:     Traditional and augmented transaction processing     Traditional and logical data warehouse     Data science exploration/deep learning     Stream/event processing   ...

Cloud Data Warehouse Comparison: Redshift vs. BigQuery vs. Azure vs. Snowflake for Real-Time Workloads

Image
  Data helps companies take the guesswork out of decision-making. Teams can use data-driven evidence to decide which products to build, which features to add, and which growth initiatives to pursue. And, such insights-driven businesses grow at an annual rate of over 30%. But, there’s a difference between being merely data-aware and insights-driven. Discovering insights requires finding a way to analyze data in near real-time, which is where cloud data warehouses play a vital role. As scalable repositories of data, warehouses allow businesses to find insights by storing and analyzing huge amounts of structured and semi-structured data. And, running a data warehouse is more than a technical initiative. It’s vital to the overall business strategy and can inform an array of future product, marketing, and engineering decisions. But, choosing a cloud data warehouse provider can be challenging. Users have to evaluate costs, performance, the ability to handle real-time workloads, and other...

30 ways to leave your data center: key migration guides, in one place

Image
  One of the challenges with cloud migration is that you’re solving a puzzle with multiple pieces. In addition to a number of workloads you could migrate, you’re also solving for challenges you’re facing, the use cases driving you to migrate, and the benefits you’re looking to gain. Each organization’s puzzle will likely get solved in their own unique way, but thankfully there is plenty of guidance on how you can migrate common workloads in successful ways.  In addition to working directly with our Rapid Assessment and Migration Program (RAMP), we also offer a plethora of self-service guides to help you succeed! Some of these guides, which we’ll cover below, are designed to help you identify the best ways to migrate, which include meeting common organizational goals like minimizing time and risk during your migration, identifying the most enterprise-grade infrastructure for your workloads, picking a cloud that aligns with your organization’s sustainability goals...

What is a Vector Database?

Image
  The meteoric rise in Machine Learning in the last few years has led to increasing use of vector embeddings. They are fundamental to many models and approaches, and are a potent tool for applications such as semantic search, similarity search, and anomaly detection. The unique nature, growing volume, and rising importance of vector embeddings make it necessary to find new methods of storage and retrieval. We need a new kind of database. Continue reading >>>

Swarm64: Open source PostgreSQL on steroids

Image
PostgreSQL is a big deal. The most common SQL open source database that you have never heard of, as ZDNet's own Tony Baer called it. Besides being the framework on which a number of commercial offerings were built, PostgreSQL has a user base of its own. According to DB Engines, PostgreSQL is the 4th most popular database in the world. Swarm64, on the other hand, is a small vendor. So small, actually, that we have shared the stage with CEO Thomas Richter in a local Berlin Meetup a few years back. Back then, Richter was not CEO, and Swarm64 was even smaller. But its value proposition still sounded attractive: boost PostgreSQL's performance for free. Swarm64 is an acceleration layer for PostgreSQL. There's no such thing as a free lunch of course, so the "for free" part is a figure of speech. Swarm64 is a commercial vendor. Until recently, however, the real gotcha was hardware: Swarm64 Database Acceleration (DA) required a specialized chip called FPGA to be able ...

ETL and How it Changed Over Time

Image
Modern world data and its usage has drastically changed when compared to a decade ago. There is a gap caused by the traditional ETL processes when processing modern data. The following are some of the main reasons for this:  Modern data processes often include real-time streaming data, and organizations need real-time insights into processes.  The systems need to perform ETL on data streams without using batch processing, and they should handle high data rates by scaling the system. Some single-server databases are now replaced by distributed data platforms ( e.g., Cassandra, MongoDB, Elasticsearch, SAAS apps ), message brokers( e.g., Kafka, ActiveMQ, etc. ) and several other types of endpoints. The system should have the capability to plugin additional sources or sinks to connect on the go in a manageable way. Repeated data processing due to ad hoc architecture has to be eliminated. Change data capture technologies used with traditional ETL has to be integ...

Neo4j Aura: A New Graph Database as a Service

Image
Aura is an entirely new, built-from-the-ground-up, multi-tenant graph DBaaS based on Neo4j. It lets any developer take advantage of the best graph database in the world via a frictionless service in the cloud.  When we began building Neo4j all those years ago, we wanted to give developers a database that was very powerful, flexible… and accessible to all. We believed that open source was the best way to bring this product to developers worldwide. Since then, the vast majority of our paying customers have started out with data practitioners leading the way. Individual developers downloaded Neo4j, experimented with it, and realized graphs were an ideal way to model and traverse connected data. However, only a few of those developers had direct access to a budget to make the leap to our Enterprise Edition. Neo4j Aura bridges that gap for individuals, small teams and established startups. I believe this is the next logical step in Neo4j’s vision to help the world make sense of data....

Modern applications at AWS

Image
Innovation has always been part of the Amazon DNA, but about 20 years ago, we went through a radical transformation with the goal of making our iterative process—"invent, launch, reinvent, relaunch, start over, rinse, repeat, again and again"—even faster. The changes we made affected both how we built applications and how we organized our company. Back then, we had only a small fraction of the number of customers that Amazon serves today. Still, we knew that if we wanted to expand the products and services we offered, we had to change the way we approached application architecture. The giant, monolithic "bookstore" application and giant database that we used to power Amazon.com limited our speed and agility. Whenever we wanted to add a new feature or product for our customers, like video streaming, we had to edit and rewrite vast amounts of code on an application that we'd designed specifically for our first product—the bookstore. This was a long, unwieldy p...

Tuning Snowflake Performance Using the Query Cache

Image
In terms of performance tuning in Snowflake, there are very few options available. However, it is worth understanding how the Snowflake architecture includes various levels of caching to help speed your queries. This article provides an overview of the techniques used, and some best practice tips on how to maximise system performance using caching. Snowflake Database Architecture Before starting it’s worth considering the underlying Snowflake architecture, and explaining when Snowflake caches data. The diagram below illustrates the overall architecture which consists of three layers:- Service Layer:   Which accepts SQL requests from users, coordinates queries, managing transactions and results.  Logically, this can be assumed to hold the  result cache  – a cached copy of the results of every query executed. Compute Layer:   Which actually does the heavy lifting.  ...

The Forrester Wave™: Big Data NoSQL, Q1 2019

Image
Key Takeaways MongoDB, Microsoft, Couchbase, AWS, Google, And Redis Labs Lead The Pack Forrester's research uncovered a market in which MongoDB, Microsoft, Couchbase, AWS, Google, and Redis Labs are Leaders; MarkLogic, DataStax, Aerospike, Oracle, Neo4j, and IBM are Strong Performers; and SAP, ArangoDB, and RavenDB are Contenders. Performance, Scalability, Multimodel, And Security Are Key Differentiators The Leaders we identified support a broader set of use cases, automation, good scalability and performance, and security offerings. The Strong Performers have turned up the heat on the incumbents. Contenders offer lower costs and are ramping up their core NoSQL functionality. THE RISE OF BIG DATA NOSQL PLATFORMS NoSQL is more than a decade old. It has gone from supporting simple schemaless apps to becoming a mission-critical data platform for large Fortune 1000 companies. It has already disrupted the database market, which was dominated for decades by relational datab...

Serverless Computing: One Step Forward, Two Steps Back

Image
Serverless computing offers the potential to program the cloud in an autoscaling, pay-as-you go manner. In this paper we address critical gaps in first-generation serverless computing, which place its autoscaling potential at odds with dominant trends in modern computing: notably data-centric and distributed computing, but also open source and custom hardware. Put together, these gaps make current serverless offerings a bad fit for cloud innovation and particularly bad for data systems innovation. In addition to pinpointing some of the main shortfalls of current serverless architectures, we raise a set of challenges we believe must be met to unlock the radical potential that the cloud---with its exabytes of storage and millions of cores---should offer to innovative developers. Read full article >>>

Gartner - 2019 Magic Quadrant for Data Management Solutions for Analytics

Image
Gartner defines a data management solution for analytics (DMSA) as a complete software system that supports and manages data in one or many file management systems, most commonly a database or multiple databases. These management systems include specific optimization strategies designed for supporting analytical processing — including, but not limited to, relational processing, nonrelational processing (such as graph processing), and machine learning or programming languages such as Python or R. Data is not necessarily stored in a relational structure, and can use multiple data models — relational, XML, JavaScript Object Notation (JSON), key-value, graph, geospatial and others. Our definition also states that: A DMSA is a system for storing, accessing, processing and delivering data intended for one or more of the four primary use cases Gartner identifies that support analytics (see Note 1). A DMSA is not a specific class or type of technology; it is a use case. A DMSA ma...

Enterprise data integration with an operational data hub

Big data (also called NoSQL) technologies facilitate the ingestion, processing, and search of data with no regard to schema (database structure). Web technologies such as Google, LinkedIn, and Facebook use big data technologies to process the tremendous amount of data from every possible source without regard to structure, and offer a searchable interface to access it. Modern NoSQL technologies have evolved to offer capabilities to govern, process, secure, and deliver data, and have facilitated the development of an integration pattern called the operational data hub (ODH). The Centers for Medicare and Medicaid Services (CMS) and other organizations (public and private) in the health, finance, banking, entertainment, insurance, and defense sectors (amongst others) utilize the capabilities of ODH technologies for enterprise data integration. This gives them the ability to access, integrate, master, process, and deliver data across the enterprise. Traditional mode...

Tableau 10.5 with Hyper and server on Linux

Excited about new Tableau 10.5 with Hyper added as a data engine and Linux support. New features: https://www.tableau.com/products/new-features Hyper: https://www.tableau.com/products/technology

2017 Gartner Magic Quadrant for Data Management Solutions for Analytics

Image
Details >> (shared by MemSQL here )