Posts

Showing posts from July, 2020

The unreasonable importance of data preparation

Image
We know data preparation requires a ton of work and thought. In this provocative article, Hugo Bowne-Anderson provides a formal rationale for why that work matters, why data preparation is particularly important for reanalyzing data, and why you should stay focused on the question you hope to answer. Along the way, Hugo introduces how tools and automation can help augment analysts and better enable real-time models. In a world focused on buzzword-driven models and algorithms, you’d be forgiven for forgetting about the unreasonable importance of data preparation and quality: your models are only as good as the data you feed them. This is the garbage in, garbage out principle: flawed data going in leads to flawed results, algorithms, and business decisions. If a self-driving car’s decision-making algorithm is trained on data of traffic collected during the day, you wouldn’t put it on the roads at night. To take it a step further, if such an algorithm is trained in an environment with car...

Shopify's approach to data discovery

Image
Humans generate a lot of data. Every two days we create as much data as we did from the beginning of time until 2003! The International Data Corporation estimates the global datasphere totaled 33 zettabytes (one trillion gigabytes) in 2018. The estimate for 2025 is 175 ZBs, an increase of 430%. This growth is challenging organizations across all industries to rethink their data pipelines. The nature of data usage is problem driven, meaning data assets (tables, reports, dashboards, etc.) are aggregated from underlying data assets to help decision making about a particular business problem, feed a machine learning algorithm, or serve as an input to another data asset. This process is repeated multiple times, sometimes for the same problems, and results in a large number of data assets serving a wide variety of purposes. Data discovery and management is the practice of cataloguing these data assets and all of the applicable metadata that saves time for data professionals, increasing data ...